
Micromega Corporation 1 Revised 2007-08-22

Using uM-FPU V3.1
with the OOPic®
Microcontrollers

Introduction
The uM-FPU V3.1 chip is a 32-bit floating point coprocessor that can be easily interfaced with the OOPic®
microcontroller to provide support for 32-bit IEEE 754 floating point operations and 32-bit long integer operations.

This document describes how to use the uM-FPU V3.1 chip with the OOPic. For a full description of the uM-FPU
V3.1 chip, please refer to the uM-FPU V3.1 Datasheet and uM-FPU V3.1 Instruction Reference. Application notes
and sample code are also available on the Micromega website.

uM-FPU V3.1 Pin Diagram and Pin Description

DIP-18, SOIC-18

uM-FPU

V3.1

1

2

3

4

5

6

7

8

9

18

17

16

15

14

13

12

11

10

AVDD

AVSS

SCLK

OUT0

VDD

VSS

SIN/SDA

SOUT/SCL

OUT1

AN0

AN1

CS

EXTIN

OSC1

OSC2

SEROUT

SERIN

MCLR

Pin
1
2
3
4
5
6
7
8
9

10
11

12

Name
/MCLR
AN0
AN1
CS
EXTIN
OSC1
OSC2
SEROUT
SERIN
OUT1
SOUT
SCL
SIN
SDA

Type
Input
Input
Input
Input
Input
Input
Output
Output
Input
Output
Output
Input
Input
In/Out

Description
Master Clear (Reset)
Analog Input 0
Analog Input 1
Chip Select, Interface Select
External Input
Oscillator Crystal (optional)
Oscillator Crystal (optional)
Serial Output, Debug Monitor - Tx
Serial Input, Debug Monitor - Rx
Digital Output 1
SPI Output, Busy/Ready Status
I2C Clock
SPI Input
I2C Data

Micromega Corporation 2 Using uM-FPU V3.1 with the OOPic

Micromega Corporation 3 Using uM-FPU V3.1 with the OOPic

Connecting the OOPIC using I2C
The uM-FPU is interfaced to the OOPic using the local I2C bus with a default node address of 100. The connection
is as follows:

/MCLR

AN0

AN1

CS

EXTIN

OSC1

OSC2

SEROUT

SERIN

AVDD

AVSS

SCLK

OUT0

VDD

VSS

SIN/SDA

SOUT/SCL

OUT1

uM-FPU V3.1

1

2

3

4

5

6

7

8

9

18

17

16

15

14

13

12

11

10

VDDVDD

LSCL

LSDA

OOPIC Pins

13
14
15
16
17
18

VSS
VDD
OUT0
SCLK
AVSS
AVDD

Power
Power
Output
Input
Power
Power

Digital Ground
Digital Supply Voltage
Digital Output 0
SPI Clock
Analog Ground
Analog Supply Voltage

Micromega Corporation 2 Using uM-FPU V3.1 with the OOPic

Micromega Corporation 3 Using uM-FPU V3.1 with the OOPic

Micromega Corporation 4 Using uM-FPU V3.1 with the OOPic

Brief Overview of the uM-FPU V3.1 Floating Point Coprocessor
For a full description of the uM-FPU V3.1 chip, please refer to the uM-FPU V3.1 Datasheet, uM-FPU V3.1
Instruction Reference. Application notes are also available on the Micromega website.

The uM-FPU V3.1 chip is a separate coprocessor with its own set of registers and instructions designed to provide
microcontrollers with 32-bit floating point and long integer capabilities. The OOPic communicates with the FPU
using an I2C interface. Instructions and data are sent to the FPU, and the FPU performs the calculations. The OOPic
is free to do other tasks while the FPU performs calculations. Results can be read back to the OOPic or stored on the
FPU for later use. The uM-FPU V3.1 chip has 128 registers, numbered 0 through 127, that can hold 32-bit floating
point or 32-bit long integer values. Register 0 is often used as a temporary register and is modified by some of the
uM-FPU V3.1 instructions. Registers 1 through 127 are available for general use.

The SELECTA instruction is used to select any one of the 128 registers as register A. Register A can be regarded as
an accumulator or working register. Arithmetic instructions use the value in register A as an operand and store the
result of the operation in register A. If an instruction requires more than one operand, the additional operands are
specified by the instruction. The following example selects register 2 as register A and adds register 5 to it:

SELECTA, 2 select register 2 as register A
FSET, 5 register[A] = register[A] + register[5]

Sending Instructions to the FPU
Appendix A contains a table that gives a summary of the uM-FPU V3.1 instructions, with enough information to
follow the examples in this document. For a detailed description of each instruction, refer to the uM-FPU V3.1
Instruction Reference.

The OOPic communicates with the FPU using the local I2C bus. The Fpu object (an instance of the oI2C object) is
used to communicate with the FPU. Several procedures and functions are defined by the support software for
interacting with the FPU. The fpuReset function must be called at the start of each program. It initializes the
properties of the Fpu object with the required I2C parameters and resets the uM-FPU V3.1 chip.

To send instructions to the uM-FPU, the Fpu object is used as follows:

Fpu = FADD
Fpu = 5

The Fpu object is configured to accept byte value. To send a word value, the high byte is sent first, followed by the
low byte.

Fpu = LOADWORD
Fpu = dataWord/256
Fpu = dataWord

All instructions have an opcode that tells the FPU which operation to perform. The following example calculates the
square root of register A:

Fpu = SQRT

Some instructions require additional operands or data. These are specified by the bytes following the opcode. The
following example adds register 5 to register A.

Micromega Corporation 3 Using uM-FPU V3.1 with the OOPic

Micromega Corporation 4 Using uM-FPU V3.1 with the OOPic

Micromega Corporation 5 Using uM-FPU V3.1 with the OOPic

Fpu = FADD
Fpu = 5

Some instructions return data. This example reads the lower 8 bits of register A:

Fpu = LREADBYTE
Call fpuWait
dataByte = Fpu

The following example adds the value in register 5 to the value in register 2.

Fpu = SELECTA
Fpu = 2
Fpu = FADD
Fpu = 5

It’s a good idea to use constant definitions to provide meaningful names for the registers. This makes your program
code easier to read and understand. The same example using constant definitions would be:

Const Total = 2 ' total amount (uM-FPU register)
Const Count = 5 ' current count (uM-FPU register)

Fpu = SELECTA ' select Total as register A
Fpu = Total
Fpu = FADD ' add value of Count register to Total
Fpu = Count

Micromega Corporation 4 Using uM-FPU V3.1 with the OOPic

Micromega Corporation 5 Using uM-FPU V3.1 with the OOPic

Micromega Corporation 6 Using uM-FPU V3.1 with the OOPic

Tutorial Examples
Now that we’ve introduced some of the basic concepts of sending instructions to the uM-FPU, let’s go through a
tutorial example to get a better understanding of how it all ties together. This example takes a temperature reading
from a DS1620 digital thermometer and converts it to Celsius and Fahrenheit.

Most of the data read from devices connected to the OOPic will return some type of integer value. In this example,
the interface routine for the DS1620 reads a 9-bit value and stores it in an OOPic variable called rawTemp. The
value returned by the DS1620 is the temperature in units of 1/2 degrees Celsius. The following instructions load the
rawTemp value to the uM-FPU, convert the value to floating point, then divides the value by 2 to get degrees in
Celsius.

Fpu = SELECTA ' select DegC as register A
Fpu = DegC
Fpu = LOADWORD ' load 16-bit value in rawTemp to register 0
Fpu = rawTemp/256 ‘ and convert to floating point
Fpu = rawTemp
Fpu = FSET0 ' set DegC to value in register 0
Fpu = FDIVI ' divide by 2
Fpu = 2

To get degrees in Fahrenheit we use the formula F = C * 1.8 + 32. Since 1.8 is a floating point constant, it would
often be loaded once in the initialization section of the program and used later in the program. The value 1.8 can be
loaded using the ATOF instruction as follows:

Fpu = SELECTA ' select F1_8 as register A
Fpu = F1_8
Fpu = ATOF
FpuBuffer.String = "1.8" ' load string to uM-FPU, convert to floating point
Call fpuWriteString ' and store in register 0
Fpu = FSET0 ' set F1_8 to value in register 0

Degrees in Fahrenheit (F = C * 1.8 + 32) is calculated as follows:

Fpu = SELECTA ' select degF as register A
Fpu = DegF
Fpu = FSET ' degF = degC
Fpu = DegC
Fpu = FMUL ' DegF = DegF * F1_8
Fpu = F1_8
Fpu = FADDI ' DegF = DegF + 32
Fpu = 32

Note: this tutorial example is intended to show how to perform a familiar calculation, but the FCNV instruction can
be used to perform unit conversions in one step. See the uM-FPU V3.1 Instruction Reference for a full list of
conversions.

Procedures are provided for printing floating point and long integer numbers. printFloat prints an unformatted
floating point value with up to eight digits of precision, or a formatted floating point number. The desired format is
specified by an argument passed to the procedure. The tens digit specifying the total number of characters to display,
and the ones digit specifying the number of digits after the decimal point. The DS1620 has a maximum temperature
of 125° Celsius and one decimal point of precision, so we’ll use a format of 51. The following example prints the
temperature in degrees Celsius and Fahrenheit.

Micromega Corporation 5 Using uM-FPU V3.1 with the OOPic

Micromega Corporation 6 Using uM-FPU V3.1 with the OOPic

Micromega Corporation 7 Using uM-FPU V3.1 with the OOPic

Fpu = SELECTA
Fpu = DegC
Call printFloat(51)

Fpu = SELECTA
Fpu = DegF
Call printFloat(51)

Sample code for this tutorial and a wiring diagram for the DS1620 are shown at the end of this document. The files
demo1-LCD.osc and demo1_LCDSE.osc are also included with the support software. A second set of files, demo2-
LCD.osc and demo2-LCDSE.osc, extend the demo to include minimum and maximum temperature calculations. If
you have a DS1620 you can wire up the circuit and try out the demos.

Micromega Corporation 6 Using uM-FPU V3.1 with the OOPic

Micromega Corporation 7 Using uM-FPU V3.1 with the OOPic

Micromega Corporation 8 Using uM-FPU V3.1 with the OOPic

uM-FPU V3.1 Support Software

Template files containing uM-FPU V3.1 opcode definitions and support code are provided as follows:

umfpu-LCD.osc provides template for using uM-FPU V3.1 with an LCD output
umfpu-LCDSE.osc provides template for using uM-FPU V3.1 with a Scott Edwards LCD output
umfpu-serial.osc provides template for using uM-FPU V3.1 with a serial output

These files can be used as the starting point for a new program, or the definitions and support code can be copied to
an existing program. The FPU procedures and functions are the same in all files, only the output routines are
different. A program can easily be changed from one output device to another (e.g. from LCD to serial output) by
simply replacing the print object and print initialization procedure and handling any differences in the positioning of
the output.

The template files contain the following:
• opcode definitions for all uM-FPU V3.1 instructions
• definitions for the data objects used by the FPU support routines
• sample program template
• FPU support routines and print routines as described below

fpuReset
This procedure must be called at the start of every program. It initializes the properties of the Fpu object with the
required I2C parameters, and resets the uM-FPU V3.1 chip. A sample reset call is included in the template files.

fpuSync
This function confirms communications with the FPU and is usually sent after the fpuReset procedure. It sends a
SYNC instruction, then reading a byte to see if the synchronization code (&h5C) is returned. The function returns
cvTrue if successful, or cvFalse if the synchronization failed. A sample synchronization call is included in the
template files.

fpuWait
Before sending an instruction that reads data from the FPU, all previous instructions must be completed, and the
FPU must be ready to return data. The fpuWait procedure checks the status of the uM-FPU and waits until it is
ready. The print routines call fpuWait, so it isn’t necessary to call fpuWait before calling a print routine, but if
your program reads directly from the uM-FPU, a call to fpuWait must be made prior to reading data. An example
of reading a byte value is as follows:

call fpuWait ' wait for the uM-FPU to be ready
Fpu = LREADBYTE ' send the READBYTE instruction
dataByte = Fpu ' read the byte value

The uM-FPU V3.1 chip has a 256 byte instruction buffer. In most cases, data will be read back before 256 bytes
have been sent to the FPU. If a long calculation is done which requires more than 256 bytes to be sent to the FPU, an
fpuWait call must be done at least every 256 bytes, to ensure that the instruction buffer doesn’t overflow.

Micromega Corporation 7 Using uM-FPU V3.1 with the OOPic

Micromega Corporation 8 Using uM-FPU V3.1 with the OOPic

Micromega Corporation 9 Using uM-FPU V3.1 with the OOPic

fpuWriteString
This procedure sends the string contained in the FpuBuffer object to the FPU, followed by a zero terminator.

fpuReadString
This procedure reads a zero-terminated string from the FPU and stores it in the FpuBuffer object. The user should
ensure that the length of the FpuBuffer object is sufficient for the string being read.

printVersion
Prints the FPU version string to the LCD or serial output.

printFloat
The value in register A is displayed on the LCD or serial output as a floating point value. The format is specified by
the argument passed to the printFloat procedure. If the format byte is zero, up to eight significant digits will be
displayed if required. Very large or very small numbers are displayed in exponential notation. The displayed value
can be 3 to 12 characters in length. The special cases of NaN (Not a Number), +Infinity, -Infinity, and -0.0 are
handled. Examples of the display format are as follows:

1.0 NaN 0.0
1.5e20 Infinity -0.0
3.1415927 -Infinity 1.0
-52.333334 -3.5e-5 0.01

If the format parameter is non-zero, the tens digit specifies the total number of characters to display and the ones
digit specifies the number of digits after the decimal point. If the value is too large for the format specified, then
asterisks will be displayed. If the number of digits after the decimal points is zero, no decimal point will be
displayed. Examples of the display format are as follows:

Value in A register format Display format
123.567 61 (6.1) 123.6
123.567 62 (6.2) 123.57
123.567 42 (4.2) *.**
0.9999 20 (2.0) 1
0.9999 31 (3.1) 1.0

printLong
The value in register A is displayed on the LCD or serial output as a long integer value. The format is specified by
the argument passed to the printLong procedure. If the format byte is zero, a signed long integer is displayed.
The displayed value can range from 1 to 11 characters in length. Examples of the display format are as follows:

1
500000
-3598390

If the format parameter is non-zero, and between 1 and 15, it specifies the width of the display field for a signed long
integer. The number is displayed right justified. If the format value has 100 added to it, the value is displayed as an
unsigned long integer. If the value is larger than the specified width, asterisks will be displayed. If the width is
specified as zero, as many digits as necessary will be displayed. Examples of the display format are as follows:

Value in register A format Display format
-1 10 (signed 10) -1
-1 110 (unsigned 10) 4294967295
-1 4 (signed 4) -1

Micromega Corporation 8 Using uM-FPU V3.1 with the OOPic

Micromega Corporation 9 Using uM-FPU V3.1 with the OOPic

Micromega Corporation 10 Using uM-FPU V3.1 with the OOPic

-1 104 (unsigned 4) ****
0 4 (signed 4) 0
0 0 (unformatted) 0
1000 6 (signed 6) 1000

6 (signed 6) 1000

printFpuString
The contents of the FPU string buffer are displayed on the LCD or serial output.

Micromega Corporation 9 Using uM-FPU V3.1 with the OOPic

Micromega Corporation 10 Using uM-FPU V3.1 with the OOPic

Micromega Corporation 11 Using uM-FPU V3.1 with the OOPic

Loading Data Values to the FPU
Most of the data read from devices connected to the OOPic will return some type of integer value. There are several
ways to load integer values to the FPU and convert them to 32-bit floating point or long integer values.

8-bit Integer to Floating Point
The FSETI, FADDI, FSUBI, FSUBRI, FMULI, FDIVI, FDIVRI, FPOWI, and FCMPI instructions read the byte
following the opcode as an 8-bit signed integer, convert the value to floating point, and then perform the operation.
It’s a convenient way to work with constants or data values that are signed 8-bit values. The following example
stores the lower 8 bits of variable dataByte to the Result register on the FPU.

Fpu = SELECTA
Fpu = Result
Fpu = FSETI
Fpu = dataByte

The LOADBYTE instruction reads the byte following the opcode as an 8-bit signed integer, converts the value to
floating point, and stores the result in register 0.

The LOADUBYTE instruction reads the byte following the opcode as an 8-bit unsigned integer, converts the value to
floating point, and stores the result in register 0.

16-bit Integer to Floating Point
The LOADWORD instruction reads the two bytes following the opcode as a 16-bit signed integer (MSB first),
converts the value to floating point, and stores the result in register 0. The following example adds the lower 16 bits
of variable dataWord to the Result register on the FPU.

Fpu = SELECTA
Fpu = Result
Fpu = LOADWORD
Fpu = dataWord/256
Fpu = dataWord
Fpu = FADD0

The LOADUWORD instruction reads the two bytes following the opcode as a 16-bit unsigned integer (MSB first),
converts the value to floating point, and stores the result in register 0.

32-bit Integer to Floating Point
A 32-bit integer constant can be written to the FPU, then converted to floating point using the FLOAT instruction.
The following example sets register 10 to 500000.0.

Fpu = SELECTA ' select register 10 as register A
Fpu = 10
Fpu = LWRITEA ' load 500000 (0007A120 hexadecimal)
Fpu = &h00
Fpu = &h07
Fpu = &hA1
Fpu = &h20
Fpu = FLOAT ' convert to floating point

The OOPic doesn’t have support 32-bit variables, so 32-bit long integer values are stored in 4-byte array objects.
The following example writes the 32-bit integer value stored in the lval object to register A.

Fpu = LWRITEA

Micromega Corporation 10 Using uM-FPU V3.1 with the OOPic

Micromega Corporation 11 Using uM-FPU V3.1 with the OOPic

Micromega Corporation 12 Using uM-FPU V3.1 with the OOPic

lval.Location = 0
Fpu = lval
lval.Location = 1
Fpu = lval
lval.Location = 2
Fpu = lval
lval.Location = 3
Fpu = lval

32-bit Floating Point to Floating point
A 32-bit floating point constant can be written directly to the FPU. This is one of the more efficient ways to load
floating point constants, but requires knowledge of the internal representation for floating point numbers (see
Appendix B). The uM-FPU V3 IDE can be used to easily generate the 32-bit values. This example sets Angle = 20.0
(the floating point representation for 20.0 is $41A00000).

Fpu = SELECTA ' select Angle as register A
Fpu = Angle
Fpu = LWRITEA ' load 500000 (0007A120 hexadecimal)
Fpu = &h41
Fpu = &hA0
Fpu = &h00
Fpu = &h00

The OOPic doesn’t have support 32-bit variables, so 32-bit floating point values are stored in 4-byte array objects.
The following example writes the 32-bit floating point value stored in the fval object to register A.

Fpu = FWRITEA
fval.Location = 0
Fpu = fval
fval.Location = 1
Fpu = fval
fval.Location = 2
Fpu = fval
fval.Location = 3
Fpu = fval

ASCII string to Floating Point
The ATOF instruction is used to convert zero-terminated strings to floating point values. The instruction reads the
bytes following the opcode (until a zero terminator is read), converts the string to floating point, and stores the result
in register 0. The following example sets the register Angle to 1.5885.

Fpu = SELECTA
Fpu = Angle
Fpu = ATOF
FpuBuffer.String = "1.5885"
Call FpuWriteString
Fpu = FSET0

8-bit Integer to Long Integer
The LSETI, LADDI, LSUBI, LMULI, LDIVI, LCMPI, LUDIVI, LUCMPI, and LTSTI instructions read the byte
following the opcode as an 8-bit signed integer, convert the value to long integer, and then perform the operation.
It’s a convenient way to work with constants or data values that are signed 8-bit values. The following example adds
the lower 8 bits of variable dataByte to the Total register on the FPU.

Fpu = SELECTA

Micromega Corporation 11 Using uM-FPU V3.1 with the OOPic

Micromega Corporation 12 Using uM-FPU V3.1 with the OOPic

Micromega Corporation 13 Using uM-FPU V3.1 with the OOPic

Fpu = Total
Fpu = LADDI
Fpu = dataByte

The LONGBYTE instruction reads the byte following the opcode as an 8-bit signed integer, converts the value to long
integer, and stores the result in register 0.

The LONGUBYTE instruction reads the byte following the opcode as an 8-bit unsigned integer, converts the value to
long integer, and stores the result in register 0.

16-bit Integer to Long Integer
The LONGWORD instruction reads the two bytes following the opcode as a 16-bit signed integer (MSB first),
converts the value to long integer, and stores the result in register 0. The following example adds the lower 16 bits of
variable dataWord to the Total register on the FPU.

Fpu = SELECTA
Fpu = Total
Fpu = LOADWORD
Fpu = dataWord/256
Fpu = dataWord
Fpu = LADD0

The LONGUWORD instruction reads the two bytes following the opcode as a 16-bit unsigned integer (MSB first),
converts the value to long integer, and stores the result in register 0.

32-bit integer to Long Integer
A 32-bit integer constant can be written directly to the FPU. The following example sets register 10 to 500000.

Fpu = SELECTA ' select register 10 as register A
Fpu = 10
Fpu = LWRITEA ' load 500000 (0007A120 hexadecimal)
Fpu = &h00
Fpu = &h07
Fpu = &hA1
Fpu = &h20

ASCII string to Long Integer
The ATOL instruction is used to convert strings to long integer values. The instruction reads the bytes following the
opcode (until a zero terminator is read), converts the string to long integer, and stores the result in register 0. The
following example sets the register Total to 500000.

Fpu = SELECTA
Fpu = Total
Fpu = LTOA
FpuBuffer.String = "500000"
Call fpuWriteString
Fpu = FSET0

The fastest operations occur when the FPU registers are already loaded with values. In time critical portions of code
floating point constants should be loaded beforehand to maximize the processing speed in the critical section. With
128 registers available on the FPU, it’s often possible to pre-load all of the required constants. In non-critical
sections of code, data and constants can be loaded as required.

Micromega Corporation 12 Using uM-FPU V3.1 with the OOPic

Micromega Corporation 13 Using uM-FPU V3.1 with the OOPic

Micromega Corporation 14 Using uM-FPU V3.1 with the OOPic

Reading Data Values from the FPU
The uM-FPU V3.1 chip has a 256 byte instruction buffer which allows data transmission to continue while previous
instructions are being executed. Before reading data, you must check to ensure that the previous instructions have
completed, and the FPU is ready to send data. The fpuWait procedure is used to wait until the FPU is ready, then a
read instruction is sent, and the data can be read.

8-bit Integer
The LREADBYTE instruction reads the lower 8 bits from register A. The following example stores the lower 8 bits
of register A in variable dataByte.

Call fpuWait
Fpu = LREADBYTE
dataByte = Fpu

16-bit Integer
The LREADWORD instruction reads the lower 16 bits from register A. The following example stores the lower 16 bits
of register A in variable dataWord.

Call fpuWait
Fpu = LREADWORD
dataWord = Fpu * 256
dataWord = dataWord + Fpu

32-bit Integer
The OOPic doesn’t have support 32-bit variables, so 32-bit long integer values are stored in 4-byte array objects.
The following example reads the 32-bit integer value from register A, and stores the value in the lval object.

Call fpuWait
Fpu = LREADA
lval.Location = 0
lval = Fpu
lval.Location = 1
lval = Fpu
lval.Location = 2
lval = Fpu
lval.Location = 3
lval = Fpu

Long Integer to ASCII string
The LTOA instruction can be used to convert long integer values to an ASCII string. The printLong procedure
uses this instruction to read the long integer value from register A and display it on the LCD or serial output.

Micromega Corporation 13 Using uM-FPU V3.1 with the OOPic

Micromega Corporation 14 Using uM-FPU V3.1 with the OOPic

Micromega Corporation 15 Using uM-FPU V3.1 with the OOPic

Floating Point
The OOPic doesn’t have support 32-bit variables, so 32-bit floating point values are stored in 4-byte array objects.
The following example reads the 32-bit floating point value from register A, and stores the value in the fval object.

Call fpuWait
Fpu = FREADA
fval.Location = 0
fval = Fpu
fval.Location = 1
fval = Fpu
fval.Location = 2
fval = Fpu
fval.Location = 3
fval = Fpu

Floating Point to ASCII string
The FTOA instruction can be used to convert floating point values to an ASCII string. The printFloat routine
uses this instruction to read the floating point value from register A and display it on the LCD or serial output.

Micromega Corporation 14 Using uM-FPU V3.1 with the OOPic

Micromega Corporation 15 Using uM-FPU V3.1 with the OOPic

Micromega Corporation 16 Using uM-FPU V3.1 with the OOPic

Comparing and Testing Floating Point Values
Floating point values can be zero, positive, negative, infinite, or Not a Number (which occurs if an invalid operation
is performed on a floating point value). The status byte is read using the fpuReadStatus function. It waits for the
FPU to be ready before sending the READSTATUS instruction and reading the current status from the FPU.
Definitions for the status bits are provided as follows:

const status_Zero = &h01 ' Zero status bit (0-not zero, 1-zero)
const status_Sign = &h02 ' Sign status bit (0-positive, 1-negative)
const status_NaN = &h04 ' Not a Number status bit (0-valid number, 1-NaN)
const status_Inf = &h08 ' Infinity status bit (0-not infinite, 1-infinite)

The FSTATUS and FSTATUSA instructions are used to set the status byte to the floating point status of the selected
register. The following example checks the floating point status of register A:

Fpu = FSTATUSA
tmp = fpuReadStatus
If ((tmp And status_Sign) <> 0) Then
 print.String = "Result is negative"
End If
If ((tmp And status_Zero) <> 0) Then
 print.String = "Result is zero"
End If

The FCMP, FCMP0, and FCMPI instructions are used to compare two floating point values. The status bits are set
for the result of register A minus the operand (the selected registers are not modified). For example, to compare
register A to the value 10.0:

Fpu = FCMPI
Fpu = 10
tmp = fpuReadStatus
If ((tmp And status_Zero) <> 0) Then

print.String = "Value1 = Value2"
Elseif ((tmp And status_Sign) <> 0) Then

print.String = "Value1 < Value2"
Else

print.String = "Value1 > Value2"
End If

The FCMP2 instruction compares two floating point registers. The status bits are set for the result of the first register
minus the second register (the selected registers are not modified). For example, to compare registers Value1 and
Value2:

Fpu = FCMP2
Fpu = Value1
Fpu = Value2
tmp = fpuReadStatus

Micromega Corporation 15 Using uM-FPU V3.1 with the OOPic

Micromega Corporation 16 Using uM-FPU V3.1 with the OOPic

Micromega Corporation 17 Using uM-FPU V3.1 with the OOPic

Comparing and Testing Long Integer Values
A long integer value can be zero, positive, or negative. The status byte is read using the fpuReadStatus
function. It waits for the FPU to be ready before sending the READSTATUS instruction and reading the status.
Definitions for the status bits are provided as follows:

const status_Zero = &h01 ' Zero status bit (0-not zero, 1-zero)
const status_Sign = &h02 ' Sign status bit (0-positive, 1-negative)

The LSTATUS and LSTATUSA instructions are used to set the status byte to the long integer status of the selected
register. The following example checks the long integer status of register A:

Fpu = LSTATUSA
tmp = fpuReadStatus
If ((tmp And status_Sign) <> 0) Then
 print.String = "Result is negative"
End If
If ((tmp And status_Zero) <> 0) Then
 print.String = "Result is zero"
End If

The LCMP, LCMP0, and LCMPI instructions are used to do a signed comparison of two long integer values. The
status bits are set for the result of register A minus the operand (the selected registers are not modified). For
example, to compare register A to the value 10:

Fpu = LCMPI
Fpu = 10
tmp = fpuReadStatus
If ((tmp And status_Zero) <> 0) Then

print.String = "Value1 = Value2"
Elseif ((tmp And status_Sign) <> 0) Then

print.String = "Value1 < Value2"
Else

print.String = "Value1 > Value2"
End If

The LCMP2 instruction does a signed compare of two long integer registers. The status bits are set for the result of
the first register minus the second register (the selected registers are not modified). For example, to compare
registers Value1 and Value2:

Fpu = LCMP2
Fpu = Value1
Fpu = Value2
tmp = fpuReadStatus

The LUCMP, LUCMP0, and LUCMPI instructions are used to do an unsigned comparison of two long integer values.
The status bits are set for the result of register A minus the operand (the selected registers are not modified).

The LUCMP2 instruction does an unsigned compare of two long integer registers. The status bits are set for the
result of the first register minus the second register (the selected registers are not modified).

The LTST, LTST0 and LTSTI instructions are used to do a bit-wise compare of two long integer values. The status
bits are set for the logical AND of register A and the operand (the selected registers are not modified).

Micromega Corporation 16 Using uM-FPU V3.1 with the OOPic

Micromega Corporation 17 Using uM-FPU V3.1 with the OOPic

Micromega Corporation 18 Using uM-FPU V3.1 with the OOPic

Further Information
The following documents are also available:

uM-FPU V3.1 Datasheet provides hardware details and specifications
uM-FPU V3.1 Instruction Reference provides detailed descriptions of each instruction
uM-FPU Application Notes various application notes and examples

Check the Micromega website at www.micromegacorp.com for up-to-date information.

Micromega Corporation 17 Using uM-FPU V3.1 with the OOPic

Micromega Corporation 18 Using uM-FPU V3.1 with the OOPic

Micromega Corporation 19 Using uM-FPU V3.1 with the OOPic

DS1620 Connections for Demo 1

DQ

CLK

RST

GND

VDD

THIGH

TLOW

TCOM

DS1620

18

17

16

15

1

2

3

4

1K

I/O 10

I/O 9

OOPic Pins

I/O 8

+5V

Sample Code for Tutorial (demo1-LCD.osc)

' This program demonstrates the use of the uM-FPU V2 floating point coprocessor
' with the OOPic. It takes temperature readings from a DS1620 digital
' thermometer, converts them to floating point and displays them in degrees
' Celsius and degrees Fahrenheit on an LCD.
'
' Note: uM-FPu V3.1 defintiions and support routines are not shown,
' see demo1-LCD.osc file for full listing.

'-------------------- LCD objects ---

Dim print As New oLCD ' use LCD for print output

'-------------------- DS1620 objects --

Dim DS_RST As New oDIO1 ' DS1620 reset pin
Dim DS_CLK As New oDIO1 ' DS1620 clock pin
Dim DS_DATA As New oDIO1 ' DS1620 data pin

'-------------------- uM-FPU register definitions -----------------------------

Const DegC = 1 ' degrees Celsius
Const DegF = 2 ' degrees Fahrenheit

'-------------------- variables ---

Dim rawTemp As New oWord ' raw temperature reading
Dim bitcnt As New oByte ' bit count

'==
'-------------------- main routine --
'==

Sub main()

' initialize devices
' ------------------
ooPIC.Snode = 1 ' assign node value for debugging
Call printSetup ' initialize the print object

print.String = "Demo1"

Micromega Corporation 18 Using uM-FPU V3.1 with the OOPic

Micromega Corporation 19 Using uM-FPU V3.1 with the OOPic

Micromega Corporation 20 Using uM-FPU V3.1 with the OOPic

print.Locate(1,0)

' reset the uM-FPU and check for synchronization
' --
Call fpuReset ' reset the uM-FPU
If fpuSync Then ' check for synchronization

Call printVersion
Else

print.String = "uM-FPU not detected"
End If

Call init_DS1620 ' initialize the DS1620
print.Clear ' clear the LCD

Do
' get temperature reading from DS1620
' -----------------------------------
Call read_temperature ' get temperature reading from DS1620

' load rawTemp to uM-FPU, convert to float, and store in register
' ---
Fpu = SELECTA ' select DegC as register A
Fpu = DegC
Fpu = LOADWORD ' load rawTemp to register 0 and
Fpu = rawTemp / 256 ' convert to floating point
Fpu = rawTemp
Fpu = FSET0 ' set DegC to value in register 0

' divide rawTemp by 2 to get degrees Celsius
' --
Fpu = FDIVI ' divide by 2
Fpu = 2

' DegF = FCNV(DegC, 1)
' --------------------
Fpu = SELECTA ' select DegF as register A
Fpu = DegF
Fpu = FSET ' set DegF to value in DegC register
Fpu = DegC
Fpu = FCNV ' convert to Celsius
Fpu = 1

' display degrees Celsius
' -----------------------
print.Locate(0,0) ' move to line 1
print.String = "Deg C:"
Fpu = SELECTA ' select DegC as A register
Fpu = DegC
Call printFloat(51) ' display floating point value in 5.1 format

' display degrees Fahrenheit
' --------------------------
print.Locate(1,0) ' move to line 2
print.String = "Deg F:"
Fpu = SELECTA ' select DegF as A register
Fpu = DegF
Call printFloat(51) ' display floating point value in 5.1 format

Micromega Corporation 19 Using uM-FPU V3.1 with the OOPic

Micromega Corporation 20 Using uM-FPU V3.1 with the OOPic

Micromega Corporation 21 Using uM-FPU V3.1 with the OOPic

' delay for 2 seconds and repeat main loop
' --
ooPIC.Delay = 200

Loop

End Sub

'-------------------- print routines --

Sub printSetup()
print.IOLineRS = 14 ' RS on I/O line 14
print.IOLineE = 15 ' E on I/O line 15
print.IOGroup = 3 ' data lines on I/O group 3
print.Nibble = 1
print.Operate = 1
print.Init ' initialize the LCD
print.Clear ' clear the LCD

End Sub

'-------------------- DS1620 support routines ---------------------------------

Sub init_DS1620()
DS_RST.IOLine = 8 ' define DS1620 interface pins
DS_RST.Direction = cvOutput
DS_CLK.IOLine = 9
DS_CLK.Direction = cvOutput
DS_DATA.IOLine = 10

DS_RST = 0 ' set initial state of pins
DS_CLK = 1
ooPIC.Delay = 10

DS_RST = 1
Call write_DS1620(&h0C) ' configure for CPU control
Call write_DS1620(&h02)
DS_RST = 0
ooPIC.Delay = 10

DS_RST = 1
Call write_DS1620(&h0EE) ' start temperature conversion
DS_RST = 0

ooPIC.Delay = 100 ' delay for first conversion
End Sub

Sub write_DS1620(val As Byte)
DS_DATA.Direction = cvOutput ' set data pin for output

For bitcnt = 1 To 8 ' send 8 bit value to DS1620 (LSB first)
DS_DATA = val
DS_CLK = 0
DS_CLK = 1
val = val / 2

Next bitcnt
End Sub

Micromega Corporation 20 Using uM-FPU V3.1 with the OOPic

Micromega Corporation 21 Using uM-FPU V3.1 with the OOPic

Micromega Corporation 22 uM-FPU V3.1 and the OOPic

Sub read_temperature()
DS_RST = 1 ' enable the DS1620
write_DS1620(&hAA) ' send read temperature command
DS_DATA.Direction = cvInput ' set data pin for input
rawTemp = 0 ' clear the temperature value

For bitcnt = 1 To 8 ' read low 8 bits from DS1620 (LSB first)
DS_CLK = 0
If DS_DATA = 1 Then rawTemp = rawTemp + 256
rawTemp = rawTemp / 2
DS_CLK = 1

Next bitcnt

DS_CLK = 0 ' read 9th bit and extend the sign
If DS_DATA = 1 Then rawTemp = rawTemp + &hFF00
DS_CLK = 1
DS_RST = 0 ' disable the DS1620

End Sub

Micromega Corporation 21 Using uM-FPU V3.1 with the OOPic

Micromega Corporation 22 uM-FPU V3.1 and the OOPic

Micromega Corporation 23 uM-FPU V3.1 and the OOPic

Appendix A
uM-FPU V3.1 Instruction Summary
Instruction Opcode Arguments Returns Description

NOP
SELECTA
SELECTX
CLR
CLRA
CLRX
CLR0
COPY
COPYA
COPYX
LOAD
LOADA
LOADX
ALOADX
XSAVE
XSAVEA
COPY0
COPYI
SWAP
SWAPA
LEFT
RIGHT
FWRITE
FWRITEA
FWRITEX
FWRITE0
FREAD
FREADA
FREADX
FREAD0
ATOF
FTOA
FSET
FADD
FSUB
FSUBR
FMUL
FDIV
FDIVR
FPOW
FCMP

FSET0
FADD0

00
01
02
03
04
05
06
07
08
09
0A
0B
0C
0D
0E
0F
10
11
12
13
14
15
16
17
18
19
1A
1B
1C
1C
1E
1F
20
21
22
23
24
25
26
27
28

29
2A

nn
nn
nn

mm,nn
nn
nn
nn

nn

nn
bb,nn
nn,mm
nn

nn,b1,b2,b3,b4
b1,b2,b3,b4
b1,b2,b3,b4
b1,b2,b3,b4
nn

aa…00
bb
nn
nn
nn
nn
nn
nn
nn
nn
nn

b1,b2,b3,b4
b1,b2,b3,b4
b1,b2,b3,b4
b1,b2,b3,b4

No Operation
Select register A
Select register X
reg[nn] = 0
reg[A] = 0
reg[X] = 0, X = X + 1
reg[nn] = 0
reg[nn] = reg[mm]
reg[nn] = reg[A]
reg[nn] = reg[X], X = X + 1
reg[0] = reg[nn]
reg[0] = reg[A]
reg[0] = reg[X], X = X + 1
reg[A] = reg[X], X = X + 1
reg[X] = reg[nn], X = X + 1
reg[X] = reg[A], X = X + 1
reg[nn] = reg[0]
reg[nn] = long(unsigned byte bb)
Swap reg[nn] and reg[mm]
Swap reg[A] and reg[nn]
Left parenthesis
Right parenthesis
Write 32-bit floating point to reg[nn]
Write 32-bit floating point to reg[A]
Write 32-bit floating point to reg[X]
Write 32-bit floating point to reg[0]
Read 32-bit floating point from reg[nn]
Read 32-bit floating point from reg[A]
Read 32-bit floating point from reg[X]
Read 32-bit floating point from reg[0]
Convert ASCII to floating point
Convert floating point to ASCII
reg[A] = reg[nn]
reg[A] = reg[A] + reg[nn]
reg[A] = reg[A] - reg[nn]
reg[A] = reg[nn] - reg[A]
reg[A] = reg[A] * reg[nn]
reg[A] = reg[A] / reg[nn]
reg[A] = reg[nn] / reg[A]
reg[A] = reg[A] ** reg[nn]
Compare reg[A], reg[nn],
Set floating point status
reg[A] = reg[0]
reg[A] = reg[A] + reg[0]

Micromega Corporation 22 uM-FPU V3.1 and the OOPic

Micromega Corporation 23 uM-FPU V3.1 and the OOPic

Micromega Corporation 24 uM-FPU V3.1 and the OOPic

FSUB0
FSUBR0
FMUL0
FDIV0
FDIVR0
FPOW0
FCMP0

FSETI
FADDI
FSUBI
FSUBRI
FMULI
FDIVI
FDIVRI
FPOWI
FCMPI

FSTATUS
FSTATUSA
FCMP2

FNEG
FABS
FINV
SQRT
ROOT
LOG
LOG10
EXP
EXP10
SIN
COS
TAN
ASIN
ACOS
ATAN
ATAN2
DEGREES
RADIANS
FMOD
FLOOR
CEIL
ROUND
FMIN
FMAX

FCNV
FMAC
FMSC

2B
2C
2D
2E
2F
30
31

32
33
34
35
36
37
38
39
3A

3B
3C
3D

3E
3F
40
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F
50
51
52
53
54
55

56
57
58

bb
bb
bb
bb
bb
bb
bb
bb
bb

nn

nn,mm

nn

nn

nn

nn
nn

bb
nn,mm
nn,mm

reg[A] = reg[A] - reg[0]
reg[A] = reg[0] - reg[A]
reg[A] = reg[A] * reg[0]
reg[A] = reg[A] / reg[0]
reg[A] = reg[0] / reg[A]
reg[A] = reg[A] ** reg[0]
Compare reg[A], reg[0],
Set floating point status
reg[A] = float(bb)
reg[A] = reg[A] - float(bb)
reg[A] = reg[A] - float(bb)
reg[A] = float(bb) - reg[A]
reg[A] = reg[A] * float(bb)
reg[A] = reg[A] / float(bb)
reg[A] = float(bb) / reg[A]
reg[A] = reg[A] ** bb
Compare reg[A], float(bb),
Set floating point status
Set floating point status for reg[nn]
Set floating point status for reg[A]
Compare reg[nn], reg[mm]
Set floating point status
reg[A] = -reg[A]
reg[A] = | reg[A] |
reg[A] = 1 / reg[A]
reg[A] = sqrt(reg[A])
reg[A] = root(reg[A], reg[nn])
reg[A] = log(reg[A])
reg[A] = log10(reg[A])
reg[A] = exp(reg[A])
reg[A] = exp10(reg[A])
reg[A] = sin(reg[A])
reg[A] = cos(reg[A])
reg[A] = tan(reg[A])
reg[A] = asin(reg[A])
reg[A] = acos(reg[A])
reg[A] = atan(reg[A])
reg[A] = atan2(reg[A], reg[nn])
reg[A] = degrees(reg[A])
reg[A] = radians(reg[A])
reg[A] = reg[A] MOD reg[nn]
reg[A] = floor(reg[A])
reg[A] = ceil(reg[A])
reg[A] = round(reg[A])
reg[A] = min(reg[A], reg[nn])
reg[A] = max(reg[A], reg[nn])
reg[A] = conversion(bb, reg[A])
reg[A] = reg[A] + (reg[nn] * reg[mm])
reg[A] = reg[A] - (reg[nn] * reg[mm])

Micromega Corporation 23 uM-FPU V3.1 and the OOPic

Micromega Corporation 24 uM-FPU V3.1 and the OOPic

Micromega Corporation 25 uM-FPU V3.1 and the OOPic

LOADBYTE
LOADUBYTE
LOADWORD
LOADUWORD
LOADE
LOADPI
LOADCON
FLOAT
FIX
FIXR
FRAC
FSPLIT

SELECTMA
SELECTMB
SELECTMC
LOADMA
LOADMB
LOADMC
SAVEMA
SAVEMB
SAVEMC
MOP
FFT
WRBLK
RDBLK
LOADIND
SAVEIND
INDA
INDX
FCALL
EECALL
RET

BRA
BRA
JMP
JMP
TABLE
FTABLE
LTABLE
POLY
GOTO
LWRITE
LWRITEA
LWRITEX

LWRITE0
LREAD
LREADA

59
5A
5B
5C
5D
5E
5F
60
61
62
63
64

65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71
7A
7B
7C
7D
7E
7F
80

81
82
83
84
85
86
87
88
89
90
91
92

93
94
95

bb
bb
b1,b2
b1,b2

bb

nn,b1,b2
nn,b1,b2
nn,b1,b2
b1,b2
b1,b2
b1,b2
b1,b2
b1,b2
b1,b2
bb
bb
tc t1…tn
tc
nn
nn
nn
nn
bb
bb

bb
cc, bb
b1, b2
cc, b1, b2
tc,t0…tn
cc,tc,t0…tn
cc,tc,t0…tn
tc,t0…tn
nn
nn,b1,b2,b3,b4
b1,b2,b3,b4
b1,b2,b3,b4

b1,b2,b3,b4
nn

t1…tn

b1,b2,b3,b4
b1,b2,b3,b4

reg[0] = float(signed bb)
reg[0] = float(unsigned byte)
reg[0] = float(signed b1*256 + b2)
reg[0] = float(unsigned b1*256 + b2)
reg[0] = 2.7182818
reg[0] = 3.1415927
reg[0] = float constant(bb)
reg[A] = float(reg[A])
reg[A] = fix(reg[A])
reg[A] = fix(round(reg[A]))
reg[A] = fraction(reg[A])
reg[A] = integer(reg[A]),
reg[0] = fraction(reg[A])
Select matrix A
Select matrix B
Select matrix C
reg[0] = Matrix A[bb, bb]
reg[0] = Matrix B[bb, bb]
reg[0] = Matrix C[bb, bb]
Matrix A[bb, bb] = reg[A]
Matrix B[bb, bb] = reg[A]
Matrix C[bb, bb] = reg[A]
Matrix/Vector operation
Fast Fourier Transform
Write multiple 32-bit values
Read multiple 32-bit values
reg[0] = reg[reg[nn]]
reg[reg[nn]] = reg[A]
Select register A using value in reg[nn]
Select register X using value in reg[nn]
Call user-defined function in Flash
Call user-defined function in EEPROM
Return from user-defined function
Unconditional branch
Conditional branch
Unconditional jump
Conditional jump
Table lookup
Floating point reverse table lookup
Long integer reverse table lookup
reg[A] = nth order polynomial
Computed GOTO
Write 32-bit long integer to reg[nn]
Write 32-bit long integer to reg[A]
Write 32-bit long integer to reg[X],
X = X + 1
Write 32-bit long integer to reg[0]
Read 32-bit long integer from reg[nn]
Read 32-bit long value from reg[A]

Micromega Corporation 24 uM-FPU V3.1 and the OOPic

Micromega Corporation 25 uM-FPU V3.1 and the OOPic

Micromega Corporation 26 uM-FPU V3.1 and the OOPic

LREADX

LREAD0
LREADBYTE
LREADWORD

ATOL
LTOA
LSET
LADD
LSUB
LMUL
LDIV

LCMP

LUDIV

LUCMP

LTST

LSET0
LADD0
LSUB0
LMUL0
LDIV0

LCMP0

LUDIV0

LUCMP0

LTST0

LSETI
LADDI
LSUBI
LMULI
LDIVI

LCMPI

LUDIVI

LUCMPI

LTSTI

LSTATUS

96

97
98
99

9A
9B
9C
9D
9E
9F
A0

A1

A2

A3

A4

A5
A6
A7
A8
A9

AA

AB

AC

AD

AE
AF
B0
B1
B2

B3

B4

B5

B6

B7

aa…00
bb
nn
nn
nn
nn
nn

nn

nn

nn

nn

bb
bb
bb
bb
bb

bb

bb

bb

bb

nn

b1,b2,b3,b4

b1,b2,b3,b4
bb
b1,b2

Read 32-bit long integer from reg[X],
X = X + 1
Read 32-bit long integer from reg[0]
Read lower 8 bits of reg[A]
Read lower 16 bits reg[A]
Convert ASCII to long integer
Convert long integer to ASCII
reg[A] = reg[nn]
reg[A] = reg[A] + reg[nn]
reg[A] = reg[A] - reg[nn]
reg[A] = reg[A] * reg[nn]
reg[A] = reg[A] / reg[nn]
reg[0] = remainder
Signed compare reg[A] and reg[nn],
Set long integer status
reg[A] = reg[A] / reg[nn]
reg[0] = remainder
Unsigned compare reg[A] and reg[nn],
Set long integer status
Test reg[A] AND reg[nn],
Set long integer status
reg[A] = reg[0]
reg[A] = reg[A] + reg[0]
reg[A] = reg[A] - reg[0]
reg[A] = reg[A] * reg[0]
reg[A] = reg[A] / reg[0]
reg[0] = remainder
Signed compare reg[A] and reg[0],
set long integer status
reg[A] = reg[A] / reg[0]
reg[0] = remainder
Unsigned compare reg[A] and reg[0],
Set long integer status
Test reg[A] AND reg[0],
Set long integer status
reg[A] = long(bb)
reg[A] = reg[A] + long(bb)
reg[A] = reg[A] - long(bb)
reg[A] = reg[A] * long(bb)
reg[A] = reg[A] / long(bb)
reg[0] = remainder
Signed compare reg[A] - long(bb),
Set long integer status
reg[A] = reg[A] / unsigned long(bb)
reg[0] = remainder
Unsigned compare reg[A] and long(bb),
Set long integer status
Test reg[A] AND long(bb),
Set long integer status
Set long integer status for reg[nn]

Micromega Corporation 25 uM-FPU V3.1 and the OOPic

Micromega Corporation 26 uM-FPU V3.1 and the OOPic

Micromega Corporation 27 uM-FPU V3.1 and the OOPic

LSTATUSA
LCMP2

LUCMP2

LNEG
LABS
LINC
LDEC
LNOT
LAND
LOR
LXOR
LSHIFT
LMIN
LMAX
LONGBYTE
LONGUBYTE
LONGWORD
LONGUWORD
SETSTATUS
SEROUT

SERIN
SETOUT
ADCMODE
ADCTRIG
ADCSCALE
ADCLONG
ADCLOAD

ADCWAIT
TIMESET
TIMELONG
TICKLONG
EESAVE
EESAVEA
EELOAD
EELOADA
EEWRITE
EXTSET
EXTLONG
EXTWAIT
STRSET
STRSEL
STRINS
STRCMP
STRFIND

B8
B9

BA

BB
BC
BD
BE
BF
C0
C1
C2
C3
C4
C5
C6
C7
C8
C9
CD
CE

CF
D0
D1
D2
D3
D4
D5

D6
D7
D8
D9
DA
DB
DC
DD
DE
E0
E1
E2
E3
E4
E5
E6
E7

nn,mm

nn,mm

nn
nn

nn
nn
nn
nn
nn
nn
bb
bb
b1,b2
b1,b2
ss
bb
bb bd
bb aa…00
bb
bb
bb

ch
ch
ch

mm,nn
nn
mm,nn
nn
nn,bc,b1…bn

aa…00
bb, bb
aa…00
aa…00
aa…00

Set long integer status for reg[A]
Signed long compare reg[nn], reg[mm]
Set long integer status
Unsigned long compare reg[nn], reg[mm]
Set long integer status
reg[A] = -reg[A]
reg[A] = | reg[A] |
reg[nn] = reg[nn] + 1, set status
reg[nn] = reg[nn] - 1, set status
reg[A] = NOT reg[A]
reg[A] = reg[A] AND reg[nn]
reg[A] = reg[A] OR reg[nn]
reg[A] = reg[A] XOR reg[nn]
reg[A] = reg[A] shift reg[nn]
reg[A] = min(reg[A], reg[nn])
reg[A] = max(reg[A], reg[nn])
reg[0] = long(signed byte bb)
reg[0] = long(unsigned byte bb)
reg[0] = long(signed b1*256 + b2)
reg[0] = long(unsigned b1*256 + b2)
Set status byte
Serial output

Serial input
Set OUT1 and OUT2 output pins
Set A/D trigger mode
A/D manual trigger
ADCscale[ch] = B
reg[0] = ADCvalue[ch]
reg[0] =
float(ADCvalue[ch]) * ADCscale[ch]
wait for next A/D sample
time = reg[0]
reg[0] = time (long integer)
reg[0] = ticks (long integer)
EEPROM[nn] = reg[mm]
EEPROM[nn] = reg[A]
reg[mm] = EEPROM[nn]
reg[A] = EEPROM[nn]
Store bytes in EEPROM
external input count = reg[0]
reg[0] = external input counter
wait for next external input
Copy string to string buffer
Set selection point
Insert string at selection point
Compare string with string buffer
Find string and set selection point

Micromega Corporation 26 uM-FPU V3.1 and the OOPic

Micromega Corporation 27 uM-FPU V3.1 and the OOPic

Micromega Corporation 28 uM-FPU V3.1 and the OOPic

Notes: Opcode Instruction opcode in hexadecimal
Arguments Additional data required by instruction
Returns Data returned by instruction
nn register number (0-127)
mm register number (0-127)
fn function number (0-63)
bb 8-bit value
b1,b2 16-bit value (b1 is MSB)
b1,b2,b3,b4 32-bit value (b1 is MSB)
b1…bn string of 8-bit bytes
ss Status byte
bd baud rate and debug mode
cc Condition code
ee EEPROM address slot (0-255)
ch A/D channel number
bc Byte count
tc 32-bit value count
t1…tn String of 32-bit values
aa…00 Zero terminated ASCII string

In the FPUdefs.bas file, LEFT, RIGHT, READ, SIN, COS, GOTO, SEROUT, SERIN have been renamed to
include an F_ prefix (e.g. F_SIN, F_COS, etc.) to avoid conflicts with reserved symbol names.

STRFCHR
STRFIELD
STRTOF
STRTOL
READSEL
STRBYTE
STRINC
STRDEC
SYNC
READSTATUS
READSTR
VERSION
IEEEMODE
PICMODE
CHECKSUM
BREAK
TRACEOFF
TRACEON
TRACESTR
TRACEREG
READVAR
RESET

E8
E9
EA
EB
EC
ED
EE
EF
F0
F1
F2
F3
F4
F5
F6
F7
F8
F9
FA
FB
FC
FF

aa…00
bb

bb

aa…00
nn
nn

aa…00

5C
ss
aa…00

Set field separators
Find field and set selection point
Convert selected string to floating point
Convert selected string to long integer
Read selected string
Insert byte at selection point
Increment string selection point
Decrement string selection point
Get synchronization byte
Read status byte
Read string from string buffer
Copy version string to string buffer
Set IEEE mode (default)
Set PIC mode
Calculate checksum for uM-FPU code
Debug breakpoint
Turn debug trace off
Turn debug trace on
Send string to debug trace buffer
Send register value to trace buffer
Read internal register value
Reset (9 consecutive FF bytes cause a
reset, otherwise it is a NOP)

Micromega Corporation 27 uM-FPU V3.1 and the OOPic

Micromega Corporation 28 uM-FPU V3.1 and the OOPic

Micromega Corporation 29 uM-FPU V3.1 and the OOPic

Appendix B
Floating Point Numbers

Floating point numbers can store both very large and very small values by “floating” the window of precision to fit
the scale of the number. Fixed point numbers can’t handle very large or very small numbers and are prone to loss of
precision when numbers are divided. The representation of floating point numbers used by the uM-FPU V3.1 is
defined by the 32-bit IEEE 754 standard. The number of significant digits for a 32-bit floating point number is

slightly more than 7 digits, and the range of values that can be handled is approximately ± 1038.53.

32-bit IEEE 754 Floating Point Representation

IEEE 754 floating point numbers have three components: a sign, exponent, the mantissa. The sign indicates whether
the number is positive or negative. The exponent has an implied base of two and a bias value. The mantissa
represents the fractional part of the number.

The 32-bit IEEE 754 representation is as follows:

Exponent MantissaS

31 30 23 22 0Bit

Sign Bit (bit 31)
The sign bit is 0 for a positive number and 1 for a negative number.

Exponent (bits 30-23)
The exponent field is an 8-bit field that stores the value of the exponent with a bias of 127 that allows it to
represent both positive and negative exponents. For example, if the exponent field is 128, it represents an
exponent of one (128 – 127 = 1). An exponent field of all zeroes is used for denormalized numbers and an
exponent field of all ones is used for the special numbers +infinity, -infinity and Not-a-Number (described
below).

Mantissa (bits 30-23)
The mantissa is a 23-bit field that stores the precision bits of the number. For normalized numbers there is
an implied leading bit equal to one.

Special Values

Zero

A zero value is represented by an exponent of zero and a mantissa of zero. Note that +0 and –0 are
distinct values although they compare as equal.

Denormalized

If an exponent is all zeros, but the mantissa is non-zero the value is a denormalized number.
Denormalized numbers are used to represent very small numbers and provide for an extended range
and a graceful transition towards zero on underflows. Note: The uM-FPU does not support operations
using denormalized numbers.

Micromega Corporation 28 uM-FPU V3.1 and the OOPic

Micromega Corporation 29 uM-FPU V3.1 and the OOPic

Infinity

The values +infinity and –infinity are denoted with an exponent of all ones and a fraction of all zeroes.
The sign bit distinguishes between +infinity and –infinity. This allows operations to continue past an
overflow. A nonzero number divided by zero will result in an infinity value.

Not A Number (NaN)

The value NaN is used to represent a value that does not represent a real number. An operation such as
zero divided by zero will result in a value of NaN. The NaN value will flow through any mathematical
operation. Note: The uM-FPU initializes all of its registers to NaN at reset, therefore any operation that
uses a register that has not been previously set with a value will produce a result of NaN.

Some examples of 32-bit IEEE 754 floating point values displayed as 32-bit hexadecimal constants are as follows:

00000000 ' 0.0
3DCCCCCD ' 0.1
3F000000 ' 0.5
3F400000 ' 0.75
3F7FF972 ' 0.9999
3F800000 ' 1.0
40000000 ' 2.0
402DF854 ' 2.7182818 (e)
40490FDB ' 3.1415927 (pi)
41200000 ' 10.0
42C80000 ' 100.0
447A0000 ' 1000.0
449A522B ' 1234.5678
49742400 ' 1000000.0
80000000 ' -0.0
BF800000 ' -1.0
C1200000 ' -10.0
C2C80000 ' -100.0
7FC00000 ' NaN (Not-a-Number)
7F800000 ' +inf
FF800000 ' -inf

